Design Speed (mph)	Superelevation Rate (e)	$\begin{array}{c} \text{Minimum} \\ \text{Superelevation} \\ \text{Runoff } (L_2) \\ \text{(ft)} \end{array}$
25	.02 .03 .04 .05 .06	34 51 69 86 103
30	.02 .03 .04 .05 .06	36 54 73 91 109
35	.02 .03 .04 .05 .06	39 58 77 96 116
40	.02 .03 .04 .05 .06	41 62 83 103 124
45	.02 .03 .04 .05 .06	44 66 89 111 133

Note: For superelevation rates intermediate between those in table, use a straightline interpolation to calculate the superelevation runoff length.

SUPERELEVATION RUNOFF LENGTHS (Low-Speed Urban Streets, Two-Lane Roadways)

Figure 43-3L